Notations

From LLWiki
(Difference between revisions)
Jump to: navigation, search
(first set of notations)
 
(Formulas: substitutions)
Line 50: Line 50:
 
=== Formulas ===
 
=== Formulas ===
   
* First order quantification: <math>\forall x A</math>
+
* First order quantification: <math>\forall x A</math> with substitution <math>A[t/x]</math>
* Second order quantification: <math>\forall X A</math>
+
* Second order quantification: <math>\forall X A</math> with substitution <math>A[B/X]</math>
* Quantification of arbitrary order (mainly first or second): <math>\forall\alpha A</math>
+
* Quantification of arbitrary order (mainly first or second): <math>\forall\alpha A</math> with substitution <math>A[\tau/\alpha]</math>
   
 
=== Rule names ===
 
=== Rule names ===

Revision as of 19:51, 7 January 2009

Contents

Logical systems

For a given logical system such as MLL (for multiplicative linear logic), we consider the following variations:

Notation Meaning Connectives
MLL propositional without units X,{\tens},{\parr}
MLLu propositional with units only \one,\bot,{\tens},{\parr}
MLL0 propositional with units and variables X,\one,\bot,{\tens},{\parr}
MLL1 first-order without units X\vec{t},{\tens},{\parr},\forall x A,\exists x A
MLL01 first-order with units X\vec{t},\one,\bot,{\tens},{\parr},\forall x A,\exists x A
MLL2 second-order propositional without units X,{\tens},{\parr},\forall X A,\exists X A
MLL02 second-order propositional with units X,\one,\bot,{\tens},{\parr},\forall X A,\exists X A
MLL12 first-order and second-order without units X\vec{t},{\tens},{\parr},\forall x A,\exists x A,\forall X A,\exists X A
MLL012 first-order and second-order with units X\vec{t},\one,\bot,{\tens},{\parr},\forall x A,\exists x A,\forall X A,\exists X A

Formulas and proof trees

Formulas

  • First order quantification: \forall x A with substitution A[t / x]
  • Second order quantification: \forall X A with substitution A[B / X]
  • Quantification of arbitrary order (mainly first or second): \forall\alpha A with substitution A[τ / α]

Rule names

Name of the connective, followed by some additional information if required, followed by "L" for a left rule or "R" for a right rule. For example: \wedge_1 \text{add} L.

Personal tools