Provable formulas
From LLWiki
(Difference between revisions)
(Quantifiers added) |
(→Monoidality of exponentials: monoidality laws for additives) |
||
Line 58: | Line 58: | ||
\begin{array}{rcl} |
\begin{array}{rcl} |
||
\wn(A\parr B) &\limp& \wn A\parr\wn B \\ |
\wn(A\parr B) &\limp& \wn A\parr\wn B \\ |
||
− | \oc A\tens\oc B &\limp& \oc(A\tens B) |
+ | \oc A\tens\oc B &\limp& \oc(A\tens B) \\ |
+ | \\ |
||
+ | \oc{(A \with B)} &\limp& \oc{A} \with \oc{B} \\ |
||
+ | \wn{A} \plus \wn{B} &\limp& \wn{(A \plus B)} \\ |
||
+ | \\ |
||
+ | \wn{(A \with B)} &\limp& \wn{A} \with \wn{B} \\ |
||
+ | \oc{A} \plus \oc{B} &\limp& \oc{(A \plus B)} |
||
\end{array} |
\end{array} |
||
</math> |
</math> |
Revision as of 19:18, 28 October 2013
This page is a stub and needs more content.
Important provable formulas are given by isomorphisms and by equivalences.
In many of the cases below the converse implication does not hold.
Contents |
Distributivities
Factorizations
Additive structure
Quantifiers
Exponential structure
Provable formulas involving exponential connectives only provide us with the lattice of exponential modalities.
Monoidality of exponentials