Categorical semantics
(→Modeling IMLL) |
(→Modeling IMLL) |
||
Line 52: | Line 52: | ||
* a morphism <math>\mathrm{eval}_{A,B}:A\tens (A\limp B)\to B</math>, called ''left evaluation'', |
* a morphism <math>\mathrm{eval}_{A,B}:A\tens (A\limp B)\to B</math>, called ''left evaluation'', |
||
for every objects <math>A</math> and <math>B</math>, such that for every morphism <math>f:A\otimes X\to B</math> there exists a unique morphism <math>h:X\to A\limp B</math> making the diagram |
for every objects <math>A</math> and <math>B</math>, such that for every morphism <math>f:A\otimes X\to B</math> there exists a unique morphism <math>h:X\to A\limp B</math> making the diagram |
||
− | <math> |
+ | :<math> |
+ | TODO |
||
</math> |
</math> |
||
commute. |
commute. |
Revision as of 18:59, 23 March 2009
Constructing denotational models of linear can be a tedious work. Categorical model are useful to identify the fundamental structure of these models, and thus simplify and make more abstract the elaboration of those models.
TODO: why categories? how to extract categorical models? etc.
See [1]for a more detailed introduction to category theory.
Contents |
Modeling IMLL
A model of IMLL is a closed symmetric monoidal category. We recall the definition of these categories below.
Definition (Monoidal category)
A monoidal category is a category equipped with
- a functor called tensor product,
- an object I called unit object,
- three natural isomorphisms α, λ and ρ, called respectively associator, left unitor and right unitor, whose components are
such that
- for every objects A,B,C,D in , the diagram
commutes,
- for every objects A and B in , the diagrams
commute.
Definition (Braided, symmetric monoidal category)
A braided monoidal category is a category together with a natural isomorphism of components
called braiding, such that the two diagrams
- UNIQ2b7982b53c151408-math-00000011-QINU
commute for every objects A, B and C.
A symmetric monoidal category is a braided monoidal category in which the braiding satisfies
for every objects A and B.
Definition (Closed monoidal category)
A monoidal category is left closed when for every object A, the functor
has a right adjoint, written
This means that there exists a bijection
which is natural in B and C. Equivalently, a monoidal category is left closed when it is equipped with a left closed structure, which consists of
- an object ,
- a morphism , called left evaluation,
for every objects A and B, such that for every morphism there exists a unique morphism making the diagram
- TODO
commute.
Dually, the monoidal category is right closed when the functor admits a right adjoint. The notion of right closed structure can be defined similarly.
In a symmetric monoidal category, a left closed structure induces a right closed structure and conversely, allowing us to simply speak of a closed symmetric monoidal category.
Modeling the additives
Definition (Product)
Definition (Monoid)
Property
Categories with products vs monoidal categories.
Modeling IMALL
Modeling negation
Definition (*-autonomous category)
TODO
References
- ↑ MacLane, Saunders. Categories for the Working Mathematician.