Semantics

From LLWiki
(Difference between revisions)
Jump to: navigation, search
(Creation of the page from the section "Main properties" of the Coherent semantics page)
 
(use of latex arrays for improving the presentation)
Line 3: Line 3:
 
== Linear negation ==
 
== Linear negation ==
   
* <math>A\biorth = A</math>
+
<math>
* <math>(A\tens B)\orth\sim A\orth\parr B\orth,\qquad\one\orth = \bot</math>
+
\begin{array}{rclcrcl}
* <math>(A\parr B)\orth\sim A\orth\tens B\orth,\qquad\bot\orth = \one</math>
+
A\biorth &=& A\\
* <math>(A\with B)\orth\sim A\orth\plus B\orth,\qquad\top\orth = \zero</math>
+
(A\tens B)\orth &\sim& A\orth\parr B\orth &\quad& \one\orth &\sim& \bot\\
* <math>(A\plus B)\orth\sim A\orth\with B\orth,\qquad\zero\orth = \top</math>
+
(A\parr B)\orth &\sim& A\orth\tens B\orth &\quad& \bot\orth &\sim& \one\\
* <math>(\oc A)\orth \sim \wn A\orth</math>
+
(A\with B)\orth &\sim& A\orth\plus B\orth &\quad& \top\orth &\sim& \zero\\
* <math>(\wn A)\orth \sim \oc A\orth</math>
+
(A\plus B)\orth &\sim& A\orth\with B\orth &\quad& \zero\orth &\sim& \top\\
+
(\oc A)\orth &\sim& \wn A\orth\\
* <math>A\limp B = A\orth\parr B</math>
+
(\wn A)\orth &\sim& \oc A\orth\\[1ex]
* <math>A\limp B \sim B\orth A\orth</math>
+
A\limp B &\sim& A\orth\parr B\\
  +
A\limp B &\sim& B\orth\limp A\orth\\
  +
\end{array}
  +
</math>
   
 
== Neutrals ==
 
== Neutrals ==
   
* <math>A\tens\one\sim\one\tens A\sim A</math>
+
<math>
* <math>A\parr\bot\sim\bot\parr A\sim A</math>
+
\begin{array}{rcl}
* <math>A\with\top\sim\top\with A\sim A</math>
+
A\tens\one &\sim& \one\tens A\sim A\\
* <math>A\plus\zero\sim\zero\plus A\sim A</math>
+
A\parr\bot &\sim& \bot\parr A\sim A\\
  +
A\with\top &\sim& \top\with A\sim A\\
  +
A\plus\zero &\sim&\zero\plus A\sim A\\
  +
\end{array}
  +
</math>
   
 
== Commutativity ==
 
== Commutativity ==
   
* <math>A\tens B \sim B\tens A</math>
+
<math>
* <math>A\parr B \sim B\parr A</math>
+
\begin{array}{rcl}
* <math>A\with B \sim B\with A</math>
+
A\tens B &\sim& B\tens A\\
* <math>A\plus B \sim B\plus A</math>
+
A\parr B &\sim& B\parr A\\
  +
A\with B &\sim& B\with A\\
  +
A\plus B &\sim& B\plus A\\
  +
\end{array}
  +
</math>
   
 
== Associativity ==
 
== Associativity ==
   
* <math>(A\tens B)\tens C \sim A\tens(B\tens C)</math>
+
<math>
* <math>(A\parr B)\parr C \sim A\parr(B\parr C)</math>
+
\begin{array}{rcl}
* <math>(A\with B)\with C \sim A\with(B\with C)</math>
+
(A\tens B)\tens C &\sim& A\tens(B\tens C)\\
* <math>(A\plus B)\plus C \sim A\plus(B\plus C)</math>
+
(A\parr B)\parr C &\sim& A\parr(B\parr C)\\
  +
(A\with B)\with C &\sim& A\with(B\with C)\\
  +
(A\plus B)\plus C &\sim& A\plus(B\plus C)\\
  +
\end{array}
  +
</math>
   
 
== Multiplicative semi-distributivity ==
 
== Multiplicative semi-distributivity ==
   
* <math>A\tens(B\parr C)\longrightarrow (A\tens B)\parr C</math>
+
<math>
  +
\begin{array}{rcl}
  +
A\tens(B\parr C) &\longrightarrow& (A\tens B)\parr C\\
  +
\end{array}
  +
</math>
   
 
== Multiplicative-additive distributivity ==
 
== Multiplicative-additive distributivity ==
   
* <math>A\tens(B\plus C)\sim (A\tens B)\plus(A\tens C),\qquad A\tens\zero\sim\zero</math>
+
<math>
* <math>A\parr(B\with C)\sim (A\parr B)\with(A\parr C),\qquad A\parr\top\sim\top</math>
+
\begin{array}{rclcrcl}
  +
A\tens(B\plus C) &\sim& (A\tens B)\plus(A\tens C) &\quad&
  +
A\tens\zero &\sim& \zero\\
  +
A\parr(B\with C) &\sim& (A\parr B)\with(A\parr C) &\quad&
  +
A\parr\top &\sim& \top\\
  +
\end{array}
  +
</math>
   
 
== Additive structure ==
 
== Additive structure ==
   
* <math>A\with B\longrightarrow A,\qquad A\with B\longrightarrow B</math>
+
<math>
* <math>(C\limp A)\with(C\limp B)\longrightarrow C\limp(A\with B)</math>
+
\begin{array}{rcl}
* <math>A\longrightarrow A\plus B,\qquad B\longrightarrow A\plus B</math>
+
A\with B \longrightarrow A &\quad& A\with B \longrightarrow B\\
* <math>(A\limp C)\with(B\limp C)\longrightarrow (A\plus B)\limp C</math>
+
(C\limp A)\with(C\limp B) &\longrightarrow& C\limp(A\with B)\\
  +
A \longrightarrow A\plus B &\quad& B \longrightarrow A\plus B\\
  +
(A\limp C)\with(B\limp C) &\longrightarrow& (A\plus B)\limp C\\
  +
\end{array}
  +
</math>
   
 
== Exponential structure ==
 
== Exponential structure ==
   
* ''Dereliction'': <math>\oc A\longrightarrow A,\qquad A\longrightarrow\wn A</math>
+
<math>
* ''Weakening'': <math>\oc A\longrightarrow 1, \qquad \bot\longrightarrow \wn A</math>
+
\begin{array}{rclcrcl}
* ''Contraction'': <math>\oc A\longrightarrow \oc A\tens\oc A,\qquad \wn A\parr\wn A\longrightarrow \wn A</math>
+
\oc A &\longrightarrow& A &\quad& A&\longrightarrow&\wn A\\
* ''Digging'': <math>\oc A\longrightarrow \oc\oc A,\qquad \wn\wn A\longrightarrow \wn A</math>
+
\oc A &\longrightarrow& 1 &\quad& \bot &\longrightarrow& \wn A\\
  +
\oc A &\longrightarrow& \oc A\tens\oc A &\quad&
  +
\wn A\parr\wn A &\longrightarrow& \wn A\\
  +
\oc A &\longrightarrow& \oc\oc A &\quad& \wn\wn A &\longrightarrow& \wn A\\
  +
\end{array}
  +
</math>
   
 
== Monoidality of exponential ==
 
== Monoidality of exponential ==
   
* <math>\oc A\tens\oc B\longrightarrow\oc(A\tens B),\qquad \one\longrightarrow\oc\one</math>
+
<math>
  +
\begin{array}{rclcrcl}
  +
\oc A\tens\oc B &\longrightarrow& \oc(A\tens B) &\quad&
  +
\one &\longrightarrow& \oc\one\\
  +
\end{array}
  +
</math>
   
 
== The exponential isomorphism ==
 
== The exponential isomorphism ==
   
* <math>\oc(A\with B)\sim \oc A\tens\oc B,\qquad \oc\top\sim\one</math>
+
<math>
* <math>\wn(A\plus B)\sim \wn A\parr\wn B,\qquad \wn\zero\sim\bot</math>
+
\begin{array}{rclcrcl}
  +
\oc(A\with B) &\sim& \oc A\tens\oc B &\quad& \oc\top &\sim& \one\\
  +
\wn(A\plus B) &\sim& \wn A\parr\wn B &\quad& \wn\zero &\sim& \bot\\
  +
\end{array}
  +
</math>

Revision as of 22:21, 8 March 2009

Linear Logic has numerous semantics some of which are described in details in the next sections. We give here an overview of the common properties that one may find in most of these models. We will denote by A\longrightarrow B the fact that there is a canonical morphism from A to B and by A˜B the fact that there is a canonical isomorphism between A and B. By "canonical" we mean that these (iso)morphisms are natural transformations.

Contents

Linear negation


\begin{array}{rclcrcl}
  A\biorth &=& A\\
  (A\tens B)\orth &\sim& A\orth\parr B\orth &\quad& \one\orth  &\sim& \bot\\
  (A\parr B)\orth &\sim& A\orth\tens B\orth &\quad& \bot\orth  &\sim& \one\\
  (A\with B)\orth &\sim& A\orth\plus B\orth &\quad& \top\orth  &\sim& \zero\\
  (A\plus B)\orth &\sim& A\orth\with B\orth &\quad& \zero\orth &\sim& \top\\
  (\oc A)\orth &\sim& \wn A\orth\\
  (\wn A)\orth &\sim& \oc A\orth\\[1ex]
  A\limp B &\sim& A\orth\parr B\\
  A\limp B &\sim& B\orth\limp A\orth\\
\end{array}

Neutrals


\begin{array}{rcl}
  A\tens\one  &\sim& \one\tens A\sim A\\
  A\parr\bot  &\sim& \bot\parr A\sim A\\
  A\with\top  &\sim& \top\with A\sim A\\
  A\plus\zero &\sim&\zero\plus A\sim A\\
\end{array}

Commutativity


\begin{array}{rcl}
  A\tens B &\sim& B\tens A\\
  A\parr B &\sim& B\parr A\\
  A\with B &\sim& B\with A\\
  A\plus B &\sim& B\plus A\\
\end{array}

Associativity


\begin{array}{rcl}
  (A\tens B)\tens C &\sim& A\tens(B\tens C)\\
  (A\parr B)\parr C &\sim& A\parr(B\parr C)\\
  (A\with B)\with C &\sim& A\with(B\with C)\\
  (A\plus B)\plus C &\sim& A\plus(B\plus C)\\
\end{array}

Multiplicative semi-distributivity


\begin{array}{rcl}
  A\tens(B\parr C) &\longrightarrow& (A\tens B)\parr C\\
\end{array}

Multiplicative-additive distributivity


\begin{array}{rclcrcl}
  A\tens(B\plus C) &\sim& (A\tens B)\plus(A\tens C) &\quad&
  A\tens\zero &\sim& \zero\\
  A\parr(B\with C) &\sim& (A\parr B)\with(A\parr C) &\quad&
  A\parr\top &\sim& \top\\
\end{array}

Additive structure


\begin{array}{rcl}
  A\with B \longrightarrow A &\quad& A\with B \longrightarrow B\\
  (C\limp A)\with(C\limp B) &\longrightarrow& C\limp(A\with B)\\
  A \longrightarrow A\plus B &\quad& B \longrightarrow A\plus B\\
  (A\limp C)\with(B\limp C) &\longrightarrow& (A\plus B)\limp C\\
\end{array}

Exponential structure


\begin{array}{rclcrcl}
  \oc A &\longrightarrow& A &\quad& A&\longrightarrow&\wn A\\
  \oc A &\longrightarrow& 1 &\quad& \bot &\longrightarrow& \wn A\\
  \oc A &\longrightarrow& \oc A\tens\oc A &\quad& 
  \wn A\parr\wn A &\longrightarrow& \wn A\\
  \oc A &\longrightarrow& \oc\oc A &\quad& \wn\wn A &\longrightarrow& \wn A\\
\end{array}

Monoidality of exponential


\begin{array}{rclcrcl}
  \oc A\tens\oc B &\longrightarrow& \oc(A\tens B) &\quad&
  \one &\longrightarrow& \oc\one\\
\end{array}

The exponential isomorphism


\begin{array}{rclcrcl}
  \oc(A\with B) &\sim& \oc A\tens\oc B &\quad& \oc\top &\sim& \one\\
  \wn(A\plus B) &\sim& \wn A\parr\wn B &\quad& \wn\zero &\sim& \bot\\
\end{array}

Personal tools