Provable formulas
From LLWiki
(Difference between revisions)
m (→Monoidality of exponential: typo) |
(Link to List of equivalences) |
||
Line 1: | Line 1: | ||
{{stub}} |
{{stub}} |
||
+ | |||
+ | Important provable formulas are given by [[List of isomorphisms|isomorphisms]] and by [[List of equivalences|equivalences]]. |
||
In many of the cases below the [[Non provable formulas|converse implication does not hold]]. |
In many of the cases below the [[Non provable formulas|converse implication does not hold]]. |
||
Line 18: | Line 20: | ||
\begin{array}{rcl} |
\begin{array}{rcl} |
||
A\with B \limp A &\quad& A\with B \limp B\\ |
A\with B \limp A &\quad& A\with B \limp B\\ |
||
− | (C\limp A)\with(C\limp B) &\limp& C\limp(A\with B)\\ |
||
− | A &\limp& A\with A\\ |
||
A \limp A\plus B &\quad& B \limp A\plus B\\ |
A \limp A\plus B &\quad& B \limp A\plus B\\ |
||
− | (A\limp C)\with(B\limp C) &\limp& (A\plus B)\limp C\\ |
||
− | A\plus A &\limp& A\\ |
||
\end{array} |
\end{array} |
||
</math> |
</math> |
||
Line 33: | Line 31: | ||
\begin{array}{rclcrcl} |
\begin{array}{rclcrcl} |
||
\oc A &\limp& A &\quad& A&\limp&\wn A\\ |
\oc A &\limp& A &\quad& A&\limp&\wn A\\ |
||
− | \oc A &\limp& 1 &\quad& \bot &\limp& \wn A\\ |
+ | \oc A &\limp& 1 &\quad& \bot &\limp& \wn A |
− | \oc A &\limp& \oc A\tens\oc A &\quad& |
||
− | \wn A\parr\wn A &\limp& \wn A\\ |
||
− | \oc A &\limp& \oc\oc A &\quad& \wn\wn A &\limp& \wn A\\ |
||
\end{array} |
\end{array} |
||
</math> |
</math> |
||
Line 45: | Line 43: | ||
\end{array} |
\end{array} |
||
</math> |
</math> |
||
− | |||
− | |||
− | Other provable formulas are given by [[List of isomorphisms|isomorphisms]]. |
Revision as of 15:55, 28 October 2013
This page is a stub and needs more content.
Important provable formulas are given by isomorphisms and by equivalences.
In many of the cases below the converse implication does not hold.
Contents |
Distributivities
Factorizations
Additive structure
Exponential structure
Provable formulas involving exponential connectives only provide us with the lattice of exponential modalities.
Monoidality of exponential