Provable formulas
From LLWiki
(Difference between revisions)
(→Factorizations: Link to the lattice of exponential modalities added.) |
(Identites added) |
||
(18 intermediate revisions by one user not shown) | |||
Line 1: | Line 1: | ||
− | {{stub}} |
+ | Important provable formulas are given by [[List of isomorphisms|isomorphisms]] and by [[List of equivalences|equivalences]]. |
+ | |||
+ | In many of the cases below the [[Non provable formulas|converse implication does not hold]]. |
||
== Distributivities == |
== Distributivities == |
||
+ | |||
+ | === Standard distributivities === |
||
<math>A\plus (B\with C) \limp (A\plus B)\with (A\plus C)</math> |
<math>A\plus (B\with C) \limp (A\plus B)\with (A\plus C)</math> |
||
+ | |||
+ | <math>A\tens (B\with C) \limp (A\tens B)\with (A\tens C)</math> |
||
+ | |||
+ | <math>\exists \xi . (A \with B) \limp (\exists \xi . A) \with (\exists \xi . B)</math> |
||
+ | |||
+ | === Linear distributivities === |
||
<math>A\tens (B\parr C) \limp (A\tens B)\parr C</math> |
<math>A\tens (B\parr C) \limp (A\tens B)\parr C</math> |
||
+ | |||
+ | <math>\exists \xi. (A \parr B) \limp A \parr \exists \xi.B \quad (\xi\notin A)</math> |
||
+ | |||
+ | <math>A \tens \forall \xi.B \limp \forall \xi. (A \tens B) \quad (\xi\notin A)</math> |
||
== Factorizations == |
== Factorizations == |
||
Line 11: | Line 23: | ||
<math>(A\with B)\plus (A\with C) \limp A\with (B\plus C)</math> |
<math>(A\with B)\plus (A\with C) \limp A\with (B\plus C)</math> |
||
− | In many of the above cases the [[Non provable formulas|converse implication does not hold]]. |
+ | <math>(A\parr B)\plus (A\parr C) \limp A\parr (B\plus C)</math> |
− | == Exponentials == |
+ | <math>(\forall \xi . A) \plus (\forall \xi . B) \limp \forall \xi . (A \plus B)</math> |
+ | |||
+ | == Identities == |
||
+ | |||
+ | <math>\one \limp A\orth\parr A</math> |
||
+ | |||
+ | <math>A\tens A\orth \limp\bot</math> |
||
+ | |||
+ | == Additive structure == |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rclcrclcrcl} |
||
+ | A\with B &\limp& A &\quad& A\with B &\limp& B &\quad& A &\limp& \top\\ |
||
+ | A &\limp& A\plus B &\quad& B &\limp& A\plus B &\quad& \zero &\limp& A |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | == Quantifiers == |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rcll} |
||
+ | A &\limp& \forall \xi.A &\quad (\xi\notin A) \\ |
||
+ | \exists \xi.A &\limp& A &\quad (\xi\notin A) |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | <br /> |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rcl} |
||
+ | \forall \xi_1.\forall \xi_2. A &\limp& \forall \xi. A[^\xi/_{\xi_1},^\xi/_{\xi_2}] \\ |
||
+ | \exists \xi.A[^\xi/_{\xi_1},^\xi/_{\xi_2}] &\limp& \exists \xi_1. \exists \xi_2.A |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | == Exponential structure == |
||
Provable formulas involving exponential connectives only provide us with the [[lattice of exponential modalities]]. |
Provable formulas involving exponential connectives only provide us with the [[lattice of exponential modalities]]. |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rclcrcl} |
||
+ | \oc A &\limp& A &\quad& A&\limp&\wn A\\ |
||
+ | \oc A &\limp& 1 &\quad& \bot &\limp& \wn A |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | == Monoidality of exponentials == |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rcl} |
||
+ | \wn(A\parr B) &\limp& \wn A\parr\wn B \\ |
||
+ | \oc A\tens\oc B &\limp& \oc(A\tens B) \\ |
||
+ | \\ |
||
+ | \oc{(A \with B)} &\limp& \oc{A} \with \oc{B} \\ |
||
+ | \wn{A} \plus \wn{B} &\limp& \wn{(A \plus B)} \\ |
||
+ | \\ |
||
+ | \wn{(A \with B)} &\limp& \wn{A} \with \wn{B} \\ |
||
+ | \oc{A} \plus \oc{B} &\limp& \oc{(A \plus B)} |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | == Promotion principles == |
||
+ | |||
+ | <math> |
||
+ | \begin{array}{rcl} |
||
+ | \oc{A} \tens \wn{B} &\limp& \wn{(A \tens B)} \\ |
||
+ | \oc{(A \parr B)} &\limp& \wn{A} \parr \oc{B} |
||
+ | \end{array} |
||
+ | </math> |
||
+ | |||
+ | == Commutations == |
||
+ | |||
+ | <math>\exists \xi . \wn A \limp \wn{\exists \xi . A}</math> |
||
+ | |||
+ | <math>\oc{\forall \xi . A} \limp \forall \xi . \oc A</math> |
||
+ | |||
+ | <math>\wn{\forall \xi . A} \limp \forall \xi . \wn A</math> |
||
+ | |||
+ | <math>\exists \xi . \oc A \limp \oc{\exists \xi . A}</math> |
Latest revision as of 14:27, 29 October 2013
Important provable formulas are given by isomorphisms and by equivalences.
In many of the cases below the converse implication does not hold.
Contents |
[edit] Distributivities
[edit] Standard distributivities
[edit] Linear distributivities
[edit] Factorizations
[edit] Identities
[edit] Additive structure
[edit] Quantifiers
[edit] Exponential structure
Provable formulas involving exponential connectives only provide us with the lattice of exponential modalities.
[edit] Monoidality of exponentials
[edit] Promotion principles
[edit] Commutations