Provable formulas

From LLWiki
(Difference between revisions)
Jump to: navigation, search
m (Monoidality of exponential: typo)
(Link to List of equivalences)
Line 1: Line 1:
 
{{stub}}
 
{{stub}}
  +
  +
Important provable formulas are given by [[List of isomorphisms|isomorphisms]] and by [[List of equivalences|equivalences]].
   
 
In many of the cases below the [[Non provable formulas|converse implication does not hold]].
 
In many of the cases below the [[Non provable formulas|converse implication does not hold]].
Line 18: Line 20:
 
\begin{array}{rcl}
 
\begin{array}{rcl}
 
A\with B \limp A &\quad& A\with B \limp B\\
 
A\with B \limp A &\quad& A\with B \limp B\\
(C\limp A)\with(C\limp B) &\limp& C\limp(A\with B)\\
 
A &\limp& A\with A\\
 
 
A \limp A\plus B &\quad& B \limp A\plus B\\
 
A \limp A\plus B &\quad& B \limp A\plus B\\
(A\limp C)\with(B\limp C) &\limp& (A\plus B)\limp C\\
 
A\plus A &\limp& A\\
 
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 33: Line 31:
 
\begin{array}{rclcrcl}
 
\begin{array}{rclcrcl}
 
\oc A &\limp& A &\quad& A&\limp&\wn A\\
 
\oc A &\limp& A &\quad& A&\limp&\wn A\\
\oc A &\limp& 1 &\quad& \bot &\limp& \wn A\\
+
\oc A &\limp& 1 &\quad& \bot &\limp& \wn A
\oc A &\limp& \oc A\tens\oc A &\quad&
 
\wn A\parr\wn A &\limp& \wn A\\
 
\oc A &\limp& \oc\oc A &\quad& \wn\wn A &\limp& \wn A\\
 
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 45: Line 43:
 
\end{array}
 
\end{array}
 
</math>
 
</math>
 
 
Other provable formulas are given by [[List of isomorphisms|isomorphisms]].
 

Revision as of 15:55, 28 October 2013

This page is a stub and needs more content.


Important provable formulas are given by isomorphisms and by equivalences.

In many of the cases below the converse implication does not hold.

Contents

Distributivities

A\plus (B\with C) \limp (A\plus B)\with (A\plus C)

A\tens (B\parr C) \limp (A\tens B)\parr C

Factorizations

(A\with B)\plus (A\with C) \limp A\with (B\plus C)

Additive structure


\begin{array}{rcl}
  A\with B \limp A &\quad& A\with B \limp B\\
  A \limp A\plus B &\quad& B \limp A\plus B\\
\end{array}

Exponential structure

Provable formulas involving exponential connectives only provide us with the lattice of exponential modalities.


\begin{array}{rclcrcl}
  \oc A &\limp& A &\quad& A&\limp&\wn A\\
  \oc A &\limp& 1 &\quad& \bot &\limp& \wn A
\end{array}

Monoidality of exponential


\begin{array}{rclcrcl}
  \oc A\tens\oc B &\limp& \oc(A\tens B) &\quad&
  \one &\limp& \oc\one\\
\end{array}

Personal tools