Translations of intuitionistic logic
m (→Call-by-value translation A\imp B \mapsto \oc{(A\limp B)}) |
m (→Call-by-value translation A\imp B \mapsto \oc{(A\limp B)}: T L rule) |
||
(6 intermediate revisions by one user not shown) | |||
Line 31: | Line 31: | ||
\LabelRule{\rulename{ax}} |
\LabelRule{\rulename{ax}} |
||
\NulRule{A^n\vdash A^n} |
\NulRule{A^n\vdash A^n} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
\UnaRule{\oc{A^n}\vdash A^n} |
\UnaRule{\oc{A^n}\vdash A^n} |
||
\DisplayProof |
\DisplayProof |
||
Line 394: | Line 394: | ||
\LabelRule{\limp L} |
\LabelRule{\limp L} |
||
\BinRule{\Gamma^v,\Delta^v,A^v\limp B^v\vdash C^v} |
\BinRule{\Gamma^v,\Delta^v,A^v\limp B^v\vdash C^v} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
\UnaRule{\Gamma^v,\Delta^v,\oc{(A^v\limp B^v)}\vdash C^v} |
\UnaRule{\Gamma^v,\Delta^v,\oc{(A^v\limp B^v)}\vdash C^v} |
||
\DisplayProof |
\DisplayProof |
||
Line 428: | Line 428: | ||
\LabelRule{\tens L} |
\LabelRule{\tens L} |
||
\UnaRule{\Gamma^v,A^v\tens B^v\vdash C^v} |
\UnaRule{\Gamma^v,A^v\tens B^v\vdash C^v} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
\UnaRule{\Gamma^v,\oc{(A^v\tens B^v)}\vdash C^v} |
\UnaRule{\Gamma^v,\oc{(A^v\tens B^v)}\vdash C^v} |
||
\DisplayProof |
\DisplayProof |
||
Line 444: | Line 444: | ||
\LabelRule{\oc R} |
\LabelRule{\oc R} |
||
\UnaRule{{}\vdash \oc{\one}} |
\UnaRule{{}\vdash \oc{\one}} |
||
+ | \DisplayProof |
||
+ | </math> |
||
+ | |||
+ | <br /> |
||
+ | |||
+ | <math> |
||
+ | \AxRule{\Gamma\vdash C} |
||
+ | \LabelRule{T L} |
||
+ | \UnaRule{\Gamma,T\vdash C} |
||
+ | \DisplayProof |
||
+ | \qquad\mapsto\qquad |
||
+ | \AxRule{\Gamma^v\vdash C^v} |
||
+ | \LabelRule{\one L} |
||
+ | \UnaRule{\Gamma^v,\one\vdash C^v} |
||
+ | \LabelRule{\oc d L} |
||
+ | \UnaRule{\Gamma^v,\oc{\one}\vdash C^v} |
||
\DisplayProof |
\DisplayProof |
||
</math> |
</math> |
||
Line 524: | Line 540: | ||
\LabelRule{\forall L} |
\LabelRule{\forall L} |
||
\UnaRule{\Gamma^v,\forall\xi A^v\vdash C^v} |
\UnaRule{\Gamma^v,\forall\xi A^v\vdash C^v} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
− | \UnaRule{\Gamma^v,\oc{(\forall\xi A^v)}\vdash C^v} |
+ | \UnaRule{\Gamma^v,\oc{\forall\xi A^v}\vdash C^v} |
\DisplayProof |
\DisplayProof |
||
</math> |
</math> |
||
Line 595: | Line 611: | ||
(A\vee B)^w & = & A^w\plus B^w \\ |
(A\vee B)^w & = & A^w\plus B^w \\ |
||
F^w & = & \zero \\ |
F^w & = & \zero \\ |
||
− | (\forall\xi A)^w & = & \oc{(\forall\xi A^w)} \\ |
+ | (\forall\xi A)^w & = & \oc{\forall\xi A^w} \\ |
(\exists\xi A)^w & = & \exists\xi A^w |
(\exists\xi A)^w & = & \exists\xi A^w |
||
\end{array} |
\end{array} |
||
Line 689: | Line 705: | ||
\LabelRule{\limp L} |
\LabelRule{\limp L} |
||
\BinRule{\Gamma^w,\Delta^w,A^w\limp B^w\vdash C^w} |
\BinRule{\Gamma^w,\Delta^w,A^w\limp B^w\vdash C^w} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
\UnaRule{\Gamma^w,\Delta^w,\oc{(A^w\limp B^w)}\vdash C^w} |
\UnaRule{\Gamma^w,\Delta^w,\oc{(A^w\limp B^w)}\vdash C^w} |
||
\DisplayProof |
\DisplayProof |
||
Line 808: | Line 824: | ||
\LabelRule{\forall L} |
\LabelRule{\forall L} |
||
\UnaRule{\Gamma^w,\forall\xi A^w\vdash C^w} |
\UnaRule{\Gamma^w,\forall\xi A^w\vdash C^w} |
||
− | \LabelRule{\oc L} |
+ | \LabelRule{\oc d L} |
− | \UnaRule{\Gamma^w,\oc{(\forall\xi A^w)}\vdash C^w} |
+ | \UnaRule{\Gamma^w,\oc{\forall\xi A^w}\vdash C^w} |
\DisplayProof |
\DisplayProof |
||
</math> |
</math> |
Latest revision as of 21:25, 5 October 2009
The genesis of linear logic comes with a decomposition of the intuitionistic implication. Once linear logic properly defined, it corresponds to a translation of intuitionistic logic into linear logic, often called Girard's translation. In fact Jean-Yves Girard has defined two translations in his linear logic paper[1]. We call them the call-by-name translation and the call-by-value translation.
These translations can be extended to translations of classical logic into linear logic.
Contents |
[edit] Call-by-name Girard's translation
Formulas are translated as:
This is extended to sequents by .
This allows one to translate the rules of intuitionistic logic into linear logic:
[edit] Call-by-value translation
Formulas are translated as:
The translation of any formula starts with , we define such that .
The translation of sequents is .
This allows one to translate the rules of intuitionistic logic into linear logic:
We use .
[edit] Alternative presentation
It is also possible to define as the primitive construction.
If we define , we have and thus we obtain the same translation of proofs.
[edit] Call-by-value Girard's translation
The original version of the call-by-value translation given by Jean-Yves Girard[1] is an optimisation of the previous one using properties of positive formulas.
Formulas are translated as:
The translation of any formula is a positive formula.
The translation of sequents is .
This allows one to translate the rules of intuitionistic logic into linear logic:
We use .
[edit] References
- ↑ 1.0 1.1 Girard, Jean-Yves. Linear logic. Theoretical Computer Science. Volume 50, Issue 1, pp. 1-101, doi:10.1016/0304-3975(87)90045-4, 1987.