Finiteness semantics
Lionel Vaux (Talk | contribs) m (fixed display math) |
Lionel Vaux (Talk | contribs) m (→Finiteness spaces: link to closure operators) |
||
Line 7: | Line 7: | ||
== Finiteness spaces == |
== Finiteness spaces == |
||
− | The construction of finiteness spaces follows a well known pattern. It is given by the following notion of orthogonality: <math>a\mathrel \bot a'</math> iff <math>a\cap a'</math> is finite. Then one unrolls familiar definitions, as we do in the following paragraphs. |
+ | The construction of finiteness spaces follows a well known pattern. It is given by the following notion of orthogonality: <math>a\mathrel \bot a'</math> iff <math>a\cap a'</math> is finite. Then one unrolls [[Phase_semantics#Closure_operators|familiar definitions]], as we do in the following paragraphs. |
Let <math>A</math> be a set. Denote by <math>\mathfrak P(A)</math> the powerset of <math>A</math> and by <math>\mathfrak P_f(A)</math> the set of all finite subsets of <math>A</math>. Let <math>{\mathfrak F} \subseteq \mathfrak P(A)</math> any set of subsets of <math>A</math>. We define the pre-dual of <math>{\mathfrak F}</math> in <math>A</math> as <math>{\mathfrak F}^{\bot_{A}}=\left\{a'\subseteq A;\ \forall a\in{\mathfrak F},\ a\cap a'\in\mathfrak P_f(A)\right\}</math>. In general we will omit the subscript in the pre-dual notation and just write <math>{\mathfrak F}\orth</math>. For all <math>{\mathfrak F}\subseteq\mathfrak P(A)</math>, we have the following immediate properties: <math>\mathfrak P_f(A) \subseteq {\mathfrak F}\orth</math>; <math>{\mathfrak F}\subseteq {\mathfrak F}\biorth</math>; if <math>{\mathfrak G}\subseteq{\mathfrak F}</math>, <math>{\mathfrak F}\orth\subseteq {\mathfrak G}\orth</math>. By the last two, we get <math>{\mathfrak F}\orth = {\mathfrak F}\triorth</math>. A finiteness structure on <math>A</math> is then a set <math>{\mathfrak F}</math> of subsets of <math>A</math> such that <math>{\mathfrak F}\biorth = {\mathfrak F}</math>. |
Let <math>A</math> be a set. Denote by <math>\mathfrak P(A)</math> the powerset of <math>A</math> and by <math>\mathfrak P_f(A)</math> the set of all finite subsets of <math>A</math>. Let <math>{\mathfrak F} \subseteq \mathfrak P(A)</math> any set of subsets of <math>A</math>. We define the pre-dual of <math>{\mathfrak F}</math> in <math>A</math> as <math>{\mathfrak F}^{\bot_{A}}=\left\{a'\subseteq A;\ \forall a\in{\mathfrak F},\ a\cap a'\in\mathfrak P_f(A)\right\}</math>. In general we will omit the subscript in the pre-dual notation and just write <math>{\mathfrak F}\orth</math>. For all <math>{\mathfrak F}\subseteq\mathfrak P(A)</math>, we have the following immediate properties: <math>\mathfrak P_f(A) \subseteq {\mathfrak F}\orth</math>; <math>{\mathfrak F}\subseteq {\mathfrak F}\biorth</math>; if <math>{\mathfrak G}\subseteq{\mathfrak F}</math>, <math>{\mathfrak F}\orth\subseteq {\mathfrak G}\orth</math>. By the last two, we get <math>{\mathfrak F}\orth = {\mathfrak F}\triorth</math>. A finiteness structure on <math>A</math> is then a set <math>{\mathfrak F}</math> of subsets of <math>A</math> such that <math>{\mathfrak F}\biorth = {\mathfrak F}</math>. |
Revision as of 19:30, 22 May 2009
The category of finiteness spaces and finitary relations was introduced by Ehrhard, refining the purely relational model of linear logic. A finiteness space is a set equipped with a finiteness structure, i.e. a particular set of subsets which are said to be finitary; and the model is such that the usual relational denotation of a proof in linear logic is always a finitary subset of its conclusion. By the usual co-Kleisli construction, this also provides a model of the simply typed lambda-calculus: the cartesian closed category .
The main property of finiteness spaces is that the intersection of two finitary subsets of dual types is always finite. This feature allows to reformulate Girard's quantitative semantics in a standard algebraic setting, where morphisms interpreting typed λ-terms are analytic functions between the topological vector spaces generated by vectors with finitary supports. This provided the semantical foundations of Ehrhard-Regnier's differential λ-calculus and motivated the general study of a differential extension of linear logic.
It is worth noticing that finiteness spaces can accomodate typed λ-calculi only: for instance, the relational semantics of fixpoint combinators is never finitary. The whole point of the finiteness construction is actually to reject infinite computations. Indeed, from a logical point of view, computation is cut elimination: the finiteness structure ensures the intermediate sets involved in the relational interpretation of a cut are all finite. In that sense, the finitary semantics is intrinsically typed.
Contents |
Finiteness spaces
The construction of finiteness spaces follows a well known pattern. It is given by the following notion of orthogonality: iff is finite. Then one unrolls familiar definitions, as we do in the following paragraphs.
Let A be a set. Denote by the powerset of A and by the set of all finite subsets of A. Let any set of subsets of A. We define the pre-dual of in A as . In general we will omit the subscript in the pre-dual notation and just write . For all , we have the following immediate properties: ; ; if , . By the last two, we get . A finiteness structure on A is then a set of subsets of A such that .
A finiteness space is a dependant pair where is the underlying set (the web of ) and is a finiteness structure on . We then write for the dual finiteness space: and . The elements of are called the finitary subsets of .
Example.
For all set A, is a finiteness space and . In particular, each finite set A is the web of exactly one finiteness space: . We introduce the following two: and . We also introduce the finiteness space of natural numbers by: and iff a is finite. We write .
Notice that is a finiteness structure iff it is of the form . It follows that any finiteness structure is downwards closed for inclusion, and closed under finite unions and arbitrary intersections. Notice however that is not closed under directed unions in general: for all , write ; then as soon as , but .
Multiplicatives
For all finiteness spaces and , we define by and . It can be shown that , where and are the obvious projections.
Let be a relation from A to B, we write . For all , we set . If moreover , we define . Then, setting , is characterized as follows: \begin{center} \begin{tabular}{r@{\ iff\ }l} & , and , \\ & , and , \\ & , and , \end{tabular} \end{center} The elements of are called finitary relations from to . By the previous characterization, the identity relation is finitary, and the composition of two finitary relations is also finitary. One can thus define the category of finiteness spaces and finitary relations: the objects of are all finiteness spaces, and . Equipped with the tensor product , is symmetric monoidal, with unit ; it is monoidal closed by the definition of ; it is * -autonomous by the obvious isomorphism between and .
Example.
Setting and , we have and .
Additives
We now introduce the cartesian structure of . We define by and where denotes the disjoint union of sets: . We have . The category is both cartesian and co-cartesian, with being the product and co-product, and the initial and terminal object. Projections are given by: \begin{eqnarray*} \lambda_{{\mathcal A},{\mathcal B}}&=&\left\{\left((1,\alpha),\alpha\right);\ \alpha\in\web{\mathcal A}\right\} \in\mathbf{Fin}({\mathcal A}\oplus{\mathcal B},{\mathcal A}) \\ \rho_{{\mathcal A},{\mathcal B}}&=&\left\{\left((2,\beta),\beta\right);\ \beta\in\web{\mathcal B}\right\} \in\mathbf{Fin}({\mathcal A}\oplus{\mathcal B},{\mathcal B}) \end{eqnarray*} and if and , pairing is given by:
The unique morphism from to is the empty relation. The co-cartesian structure is obtained symmetrically.
Example.
Write . Then is an isomorphism.
Exponentials
If A is a set, we denote by the set of all finite multisets of elements of A, and if , we write . If , we denote its support by . For all finiteness space , we define by: and . It can be shown that . Then, for all , we set
which defines a functor.
Natural transformations
and
make this functor a comonad.
Example.
We have isomorphisms and
More generally, we have
.